<tt id="i8i4i"><table id="i8i4i"></table></tt>
  • <li id="i8i4i"><table id="i8i4i"></table></li>
    <blockquote id="i8i4i"></blockquote>
  • <tt id="i8i4i"></tt>

    行業(yè)產(chǎn)品

    • 行業(yè)產(chǎn)品

    慧諾瑞德(北京)科技有限公司


    當前位置:慧諾瑞德(北京)科技有限公司>>植物表型>>高通量小型植物光合表型測量系統

    高通量小型植物光合表型測量系統

    返回列表頁(yè)
    參  考  價(jià)面議
    具體成交價(jià)以合同協(xié)議為準

    產(chǎn)品型號

    品       牌

    廠(chǎng)商性質(zhì)其他

    所  在  地北京市

    紡織服裝機械網(wǎng)采購部電話(huà):0571-88918531QQ:2568841715

    聯(lián)系方式:查看聯(lián)系方式

    更新時(shí)間:2024-04-25 14:04:14瀏覽次數:183次

    聯(lián)系我時(shí),請告知來(lái)自 紡織服裝機械網(wǎng)

    經(jīng)營(yíng)模式:其他

    商鋪產(chǎn)品:69條

    所在地區:北京北京市

    產(chǎn)品簡(jiǎn)介

    高通量小型植物光合表型測量系統PhenoMate是一款對小型植物自動(dòng)進(jìn)行頂部高通量光合表型高清成像(600萬(wàn)像素)測量的系統,配備6種濾光片進(jìn)行葉綠素熒光成像和反射光譜成像

    詳細介紹

     

    高通量小型植物光合表型測量系統PhenoMate是一款對小型植物自動(dòng)進(jìn)行頂部高通量光合表型高清成像(600萬(wàn)像素)測量的系統,配備6種濾光片進(jìn)行葉綠素熒光成像和反射光譜成像。能夠獲得用于表型分析的可見(jiàn)光成像、用于光合作用分析的葉綠素熒光成像、在近紅外區的NIR反射成像RNIR、反映葉綠素含量的葉綠素指數成像RChl,以及反映花青素含量的花青素指數成像RAnt。

     

    PhenoMate包括帶成像系統的直角坐標機器人系統、帶NAS的控制電腦系統、預裝分析軟件的分析電腦系統(配備24英寸顯示器、鍵盤(pán)、鼠標)等。

     

    PhenoMate配備4.5m x 2m或6m x 3m的培養桌用于放置植物進(jìn)行測量及培養,配備直角坐標機器人用于在x-、y-和z-方向上自動(dòng)移動(dòng)成像系統。

    • 對于4.5m x 2m的系統而言,可以放置78盆(冠層240mm x 240mm)到1248盆(冠層60mm x 60mm)植物;
    • 對于6m x 3m的系統而言,可以放置190盆(冠層240mm x 240mm)到3040盆(冠層60mm x 60mm)植物。

     

    PhenoMate的成像單元每次可以測量多達16株植物(冠層60mm x 60mm ),而這16株植物都可以進(jìn)行獨立分析。用這種方法大大提高了測量效率,做到了高通量植物表型測量。

     

    PhenoMate系統于2020年入駐大名鼎鼎的紐約古根海姆博物館!
     

     

    技術(shù)原理

    葉綠素a熒光作為光合作用研究的探針,是研究各種逆境脅迫(干旱、高溫、低溫、營(yíng)養缺失、污染、病害等)對植物影響的強大工具,亦被廣泛用于篩選同一植物品種的不同基因型。葉綠素a熒光不僅能反映光能吸收、激發(fā)能傳遞和光化學(xué)反應等光合作用的原初反應過(guò)程,而且與電子傳遞、質(zhì)子梯度的建立及ATP合成和CO2固定等過(guò)程有關(guān)。幾乎所有光合作用過(guò)程的變化均可通過(guò)葉綠素a熒光反映出來(lái),而熒光測定技術(shù)不需破碎細胞,不傷害生物體,因此通過(guò)研究葉綠素a熒光來(lái)間接研究光合作用的變化是一種簡(jiǎn)便、快捷、可靠的方法。針對葉綠素a熒光的測量方法和參數分析方法已經(jīng)成為光合作用研究的一個(gè)重要領(lǐng)域。

     

    功能特性

    • 利用直角坐標機器人實(shí)現X-Y-Z軸自動(dòng)移動(dòng)
    • 測量范圍4.5m x 2m或6m x 3m
    • 帶兩套潮汐式灌溉水培系統
    • 能夠進(jìn)行葉綠素熒光成像、葉綠素指數成像、花青素指數成像和可見(jiàn)光成像
    • 配備控制電腦和分析電腦
    • 配備控制軟件和分析軟件
    • 配備N(xiāo)AS(網(wǎng)絡(luò )附屬存儲)系統

     

    大名鼎鼎的彭博社為瓦赫寧根大學(xué)的PhenoMate系統(瓦大專(zhuān)用名稱(chēng)為Phenovator)拍攝的視頻

     

    主要應用領(lǐng)域

    • 擬南芥和其它小型植株的光合作用和表型研究
    • 光合作用機理研究,全葉片和整株植物的光合作用測量
    • 環(huán)境脅迫對植物的影響
    • 基因型篩選、突變株篩選
    • 植物功能基因組學(xué)研究
    • 脅迫損傷的早期檢測
    • 植物病理學(xué)、毒理學(xué)、環(huán)境科學(xué)研究

     

    主要技術(shù)參數

    • 成像面積:24 cm x 24 cm
    • 光照面積:30 cm x 30 cm
    • 相機傳感器類(lèi)型:CCD
    • 相機分辨率:600萬(wàn)像素,即2440 x 2440像素
    • 光譜范圍:350-950 nm
    • 鏡頭類(lèi)型:高質(zhì)量百萬(wàn)像素鏡頭
    • 光纖濾光片輪:6種高質(zhì)量光學(xué)干涉濾光片,步進(jìn)電機驅動(dòng)
    • 直角坐標機器人:全自動(dòng)控制,定位精度100 um
    • 培養桌尺寸: 4.5m x 2m或6m x 3m ,可定制化設計。
    • IT硬件:相機和直角坐標機器人由兩套獨立的電腦系統控制,并由一個(gè)帶NAS系統的服務(wù)器電腦控制整套設備。NAS系統用于數據通訊、數據存儲、數據備份,配備4 Tb硬盤(pán)進(jìn)行鏡像數據存儲。

     

    利用PhenoVation光合表型成像技術(shù)發(fā)表的部分文獻

    1. Casto A L, Schuhl H, Schneider D, et al. (2021) Analyzing chlorophyll fluorescence images in PlantCV. Earth and Space Science Open Archive:5. https://doi.org/10.1002/essoar..2
    2. Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
    3. Farooq M, van Dijk A D J, Nijveen H, et al. (2021) Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Frontiers in Genetics, 11:609117. doi: 10.3389/fgene.2020.609117
    4. He Y, Li Y, Yao Y et al. (2021) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiology and Biochemistry, 168: 340-352.
    5. Wang W, Liu D, Qin M et al. (2021) Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. International Journal of Molecular Sciences, 22(5): 2687 https://doi.org/10.3390/ijms
    6. Singh R R, Pajar J A, Audenaert K, et al. (2021) Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 12:713870. doi: 10.3389/fpls.2021.713870
    7. Vidak M, Lazarevic B, Petek M, et al. (2021) Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 11(6), 832; https://doi.org/10.3390/biom
    8. Lazarevic B, Satovic Z, Nimac A, et al. (2021) Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Frontiers in Plant Science, 12:629441. doi: 10.3389/fpls.2021.629441
    9. Romero-Perez A, Ameye M, Audenaert K, et al. (2021) Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. Frontiers in Plant Science, 12:692606. doi: 10.3389/fpls.2021.692606
    10. Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
    11. De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
    12. Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants
    13. Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
    14. Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-v2f
    15. Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
    16. Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
    17. Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
    18. Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
    19. Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
    20. Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
    21. Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
    22. Sheng X-G, Branca F, Zhao Z-Q et al. (2020) Identification of Black Rot Resistance in a Wild Brassica Species and Its Potential Transferability to Cauliflower. Argonomy, 10: 1400. doi:10.3390/agronomy
    23. Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
    24. Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) ction as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
    25. Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326
    26. Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
    27. Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
    28. Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
    29. Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
    30. Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
    31. Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipidremodeling and heatshock genes. Plant Direct, 2(7): e00069
    32. Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
    33. Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
    34. Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455
    35. Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
    36. Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
    37. Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
    38. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
    39. Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250.
    40. Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after sprayinoculation of leaves. Plant Pathology, 63(2): 255-263.
    41. Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll ?uorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221

    其他推薦產(chǎn)品更多>>

    感興趣的產(chǎn)品PRODUCTS YOU ARE INTERESTED IN

    紡織服裝機械網(wǎng) 設計制作,未經(jīng)允許翻錄必究 .? ? ? Copyright(C)?2021 http://www.lcservicesllc.com,All rights reserved.

    以上信息由企業(yè)自行提供,信息內容的真實(shí)性、準確性和合法性由相關(guān)企業(yè)負責,紡織服裝機械網(wǎng)對此不承擔任何保證責任。 溫馨提示:為規避購買(mǎi)風(fēng)險,建議您在購買(mǎi)產(chǎn)品前務(wù)必確認供應商資質(zhì)及產(chǎn)品質(zhì)量。

    會(huì )員登錄

    ×

    請輸入賬號

    請輸入密碼

    =

    請輸驗證碼

    收藏該商鋪

    登錄 后再收藏

    提示

    您的留言已提交成功!我們將在第一時(shí)間回復您~
    色欲综合久久躁天天躁_亚洲欧美另类激情综合区蜜芽_久久99国产综合精品女同_最近最好的2019中文日本字幕