<tt id="i8i4i"><table id="i8i4i"></table></tt>
  • <li id="i8i4i"><table id="i8i4i"></table></li>
    <blockquote id="i8i4i"></blockquote>
  • <tt id="i8i4i"></tt>

    紡織服裝機械網(wǎng)登錄|注冊

    首頁(yè)-資訊-技術(shù)-產(chǎn)品-企業(yè)-展會(huì )-直播- 手機版

    移動(dòng)式葉綠素熒光成像系統

    參考價(jià)面議
    具體成交價(jià)以合同協(xié)議為準
    • 公司名稱(chēng)慧諾瑞德(北京)科技有限公司
    • 品       牌
    • 型       號
    • 所  在  地北京市
    • 廠(chǎng)商性質(zhì)其他
    • 更新時(shí)間2024/4/25 14:03:02
    • 訪(fǎng)問(wèn)次數217
    產(chǎn)品標簽:

    在線(xiàn)詢(xún)價(jià)收藏產(chǎn)品 點(diǎn)擊查看電話(huà)
    慧諾瑞德(北京)科技有限公司(PhenoTrait)是一家以植物表型為核心的AIoT+DT技術(shù)公司,是國家企業(yè)、中關(guān)村企業(yè)和全國科技型中小企業(yè)。公司利用智能感知、多源多維多譜視覺(jué)技術(shù)、人工智能、自動(dòng)化和物聯(lián)網(wǎng)技術(shù),為大范圍、高通量獲取與農作物品質(zhì)、產(chǎn)量、抗性相關(guān)的植物表型及環(huán)境數據提供系統解決方案,為智慧育種、智慧種植和產(chǎn)業(yè)鏈賦能。表型組是基因組之后生命科學(xué)研究和產(chǎn)業(yè)應用的又一戰略制高點(diǎn)?;壑Z瑞德,用表型之“瞳”,筑科研之基,拓產(chǎn)業(yè)之路,賦農業(yè)之慧。 公司是國際植物表型學(xué)會(huì )(IPPN)會(huì )員,創(chuàng )始人韓志國博士是IPPN執委會(huì )成員、工業(yè)分會(huì )副主席(2020-2024),也是我國“植物表型”這一細分市場(chǎng)的創(chuàng )建者。公司是亞太植物表型國際會(huì )議(APPPcon)發(fā)起單位和China Plant Phenotyping Network (CPPN)發(fā)起單位。公司先后榮登2020國際未來(lái)農業(yè)食品榜生物農業(yè)TOP20。和2022國際未來(lái)農業(yè)食品榜種業(yè)創(chuàng )新TOP20。 公司旗下的學(xué)術(shù)公眾號“植物表型資訊”,已成為華人植物表型圈影響力的公眾號;公司參與發(fā)起的“百博智慧大講堂”,已成為國內的線(xiàn)上學(xué)術(shù)講座平臺之一。
    土壤電導率儀
    移動(dòng)式葉綠素熒光成像系統PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專(zhuān)門(mén)針對大田、溫室、氣候室和實(shí)驗室場(chǎng)景的可以移動(dòng)的葉綠素熒光測量系統
    移動(dòng)式葉綠素熒光成像系統 產(chǎn)品信息

     

    移動(dòng)式葉綠素熒光成像系統PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專(zhuān)門(mén)針對大田、溫室、氣候室和實(shí)驗室場(chǎng)景的可以移動(dòng)的葉綠素熒光測量系統。配備移動(dòng)式升降平臺車(chē)、內置電腦的葉綠素熒光成像單元、移動(dòng)電源、顯示單元和操作單元。葉綠素熒光成像單元可以升降和旋轉,既可以測量不同高度的植物冠層,也可以?xún)A斜或水平角度測量穗(麥穗、稻穗、谷穗等)、莢果(大豆、油菜等)、果實(shí)(番茄、黃瓜、葡萄、柑橘等)、葉片或冠層。

     

    該系統成像面積為18x18cm,具備500萬(wàn)像素高清成像,同時(shí)具備“調制”和“非調制”葉綠素熒光成像測量功能,既可以測量光合生理,也可以測量形態(tài)結構,同時(shí)配備功能強大的控制和分析軟件,且可以對大量數據進(jìn)行批處理分析。該系統,無(wú)論室內還是大田,都是進(jìn)行植物表型、光合生理、植物抗逆、植物病理、育種、功能基因組、突變株篩選、種子生理/病理等研究的利器。
     

     

    功能特性

    • 大田、溫室、氣候室、實(shí)驗室進(jìn)行移動(dòng)式測量
    • 葉綠素熒光成像單元可以升降、旋轉
    • 葉綠素熒光成像和表型分析同步測量
    • 同時(shí)具備調制和非調制葉綠素熒光測量功能
    • 出色的高清相機(500萬(wàn)像素)、高信噪比成像
    • 16位圖像格式,的成像質(zhì)量
    • 光源、相機、濾光片、電腦一體化設計
    • 無(wú)可見(jiàn)鏡頭畸變,無(wú)需圖像校正
    • 成像范圍18 x 18cm
    • 多種測量protocol可選,允許用戶(hù)編輯設定自己的protocol,包括但不限于Fv/Fm測量、標準誘導曲線(xiàn)測量、暗弛豫測量、OJIP快速誘導動(dòng)力學(xué)測量等等。
    • 可進(jìn)行功能強大的延時(shí)成像測量
    • 自動(dòng)計算熒光參數和表型參數
    • 具備圖像數據批處理分析功能
    • 提供多種功能強大的圖像分割功能
    • 對所有圖像數據均提供數據分級(用戶(hù)自定義范圍)并進(jìn)行圖像化顯示,并允許對分級篩選后的數據疊加到可見(jiàn)光圖像上展示
    • 圖像背景、偽彩色標尺均有多種選擇
    • 允許用戶(hù)自定義多種ROI(性狀、數目、分布等)并對ROI的數據自動(dòng)分析
    • 嵌入式電腦進(jìn)行精確的成像、時(shí)間控制、光強控制和數據存儲
    • 功能強大的控制和分析軟件
    • 特別適合突變株篩選、育種材料/組合篩選、抗逆研究、病理研究、種子研究、果實(shí)研究、功能基因組學(xué)等

    主要技術(shù)參數

    • 基本組成:移動(dòng)式升降平臺、葉綠素熒光成像單元、移動(dòng)電源、顯示單元、操作單元等
    • 葉綠素熒光成像方式:“調制”測量 +“費調制”測量
    • 調制測量光:藍色LED, 450nm,半峰全寬20nm,光強4000 umol m-2 s-1 ,獨立觸發(fā)
    • Kautsky測量光:藍色LED, 450nm,半峰全寬20nm,光強4000 umol m-2 s-1
    • 飽和脈沖:藍色LED, 450nm,半峰全寬20nm,光強4000 umol m-2 s-1,獨立觸發(fā)
    • 時(shí)間分辨動(dòng)力學(xué)光化光:紅光LED,660nm,光強800 umol m-2 s-1
    • 遠紅光:LED,735nm,半峰全寬20nm,35W
    • 相機:CMOS傳感器,500萬(wàn)像素
    • 顏色深度:12bit
    • 標準幀率:37.5 FPS
    • 圖像格式:16bit
    • 相機光譜范圍:400~1000 nm
    • 接口:3個(gè)USB3.0,1個(gè)以太網(wǎng)口,1個(gè)HDMI接口
    • 嵌入式電腦:4核處理器,8G內存,256G固態(tài)硬盤(pán)
    • 成像面積:18cm x 18cm
    • 升降高度:0-1200mm(高度可定制)
    • 旋轉角度:-90° ~ 90°
    • 顯示單元:15.6寸觸摸顯示屏
    • 供電:35萬(wàn)mAh移動(dòng)電源,額定容量1260Wh,峰值功耗1000W,待機功耗35W
    • 系統尺寸:600mm x 720mm x 2000mm(長(cháng)x寬x高)

     

     

    測量參數

    • 調制葉綠素熒光參數:Fo、Fm、Fv/Fm、dFq/Fm=DF/Fm、Fs’、Fm’、Fo’、Fq’/Fm’=Fv’/Fm’、rETR、NPQ、Y(NO)、Y(NPQ)、qN、qP、qL、1-qP和1-qL等;
    • 非調制葉綠素熒光參數:Fo、Fi、Fm、1-Fi/Fm、IC-Area、IC-Area/Fv、PI、Rfd、dRfd、RfdFm和RfdFt等;
    • 表型參數:(植物、種子、果實(shí)的)數目、輪廓面積、長(cháng)度、寬度、凸包點(diǎn)數、凸包面積、凸包面積/輪廓面積、最小外接圓(質(zhì)心、半徑、面積)、最小外接矩形(長(cháng)、寬、面積、角度、alpha)和骨架等。

     

     

     

     

     

    利用PhenoVation葉綠素熒光成像技術(shù)發(fā)表的部分文獻

    1. Casto A L, Schuhl H, Schneider D, et al. (2021) Analyzing chlorophyll fluorescence images in PlantCV. Earth and Space Science Open Archive:5. https://doi.org/10.1002/essoar..2
    2. Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
    3. Farooq M, van Dijk A D J, Nijveen H, et al. (2021) Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Frontiers in Genetics, 11:609117. doi: 10.3389/fgene.2020.609117
    4. He Y, Li Y, Yao Y et al. (2021) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiology and Biochemistry, 168: 340-352.
    5. Wang W, Liu D, Qin M et al. (2021) Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. International Journal of Molecular Sciences, 22(5): 2687 https://doi.org/10.3390/ijms
    6. Singh R R, Pajar J A, Audenaert K, et al. (2021) Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 12:713870. doi: 10.3389/fpls.2021.713870
    7. Vidak M, Lazarevic B, Petek M, et al. (2021) Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 11(6), 832; https://doi.org/10.3390/biom
    8. Lazarevic B, Satovic Z, Nimac A, et al. (2021) Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Frontiers in Plant Science, 12:629441. doi: 10.3389/fpls.2021.629441
    9. Romero-Perez A, Ameye M, Audenaert K, et al. (2021) Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. Frontiers in Plant Science, 12:692606. doi: 10.3389/fpls.2021.692606
    10. Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
    11. De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
    12. Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants
    13. Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
    14. Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-v2f
    15. Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
    16. Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
    17. Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
    18. Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
    19. Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
    20. Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
    21. Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
    22. Sheng X-G, Branca F, Zhao Z-Q et al. (2020) Identification of Black Rot Resistance in a Wild Brassica Species and Its Potential Transferability to Cauliflower. Argonomy, 10: 1400. doi:10.3390/agronomy
    23. Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
    24. Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) ction as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
    25. Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326
    26. Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
    27. Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
    28. Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
    29. Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
    30. Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
    31. Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipidremodeling and heatshock genes. Plant Direct, 2(7): e00069
    32. Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
    33. Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
    34. Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455
    35. Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
    36. Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
    37. Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
    38. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
    39. Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250.
    40. Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after sprayinoculation of leaves. Plant Pathology, 63(2): 255-263.
    41. Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll ?uorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221
    對比
    客服
    手機站
    詢(xún)價(jià)
    反饋
    回首頁(yè)

    紡織服裝機械網(wǎng) - 紡織服裝機械行業(yè)專(zhuān)業(yè)網(wǎng)絡(luò )宣傳媒體

    關(guān)于我們|本站服務(wù)|會(huì )員服務(wù)|廣告服務(wù)|旗下網(wǎng)站|友情鏈接|誠聘英才

    Copyright fzfzjx.com All Rights Reserved法律顧問(wèn):浙江天冊律師事務(wù)所 賈熙明律師

    客服熱線(xiàn):0571-87759927投訴熱線(xiàn):0571-88947171 網(wǎng)站客服:程小姐

    提示

    ×

    *您想獲取產(chǎn)品的資料:

    以上可多選,勾選其他,可自行輸入要求

    個(gè)人信息:

    色欲综合久久躁天天躁_亚洲欧美另类激情综合区蜜芽_久久99国产综合精品女同_最近最好的2019中文日本字幕